Cellular Transport Worksheet

Answer the following questions using your notes and your textbook.

OSMOSIS - Write the correct type of solution underneath (isotonic, hypertonic, or hypotonic)

1. _hypotonic_
 there is a GREATER concentration of solute molecules OUTSIDE the cell than inside.

2. _hypertonic_
 there is a LOWER concentration of solute molecules OUTSIDE the cell than inside.

3. _isotonic_
 there is the SAME concentration of solute molecules outside the cell as inside.

4. _hypertonic_ tonic
 there is a GREATER concentration of solute molecules OUTSIDE the cell than inside.

5. _hypotonic_ tonic
 there is a LOWER concentration of solute molecules OUTSIDE the cell than inside.

6. _isotonic_ tonic
 there is the SAME concentration of solute molecules outside the cell as inside.

7. The SWELLING AND BURSTING of animal cells when water enters happens when a cell is placed in a _hypotonic_ tonic solution.

8. What organelle [that plants have that animals don’t] keeps plant cells from bursting in this condition? _cell wall_

9. The SHRINKING of plant cells when water leaves so the cell membrane pulls away from the cell wall or shrinking of animal cells happens when a plant cell is placed into a _hyper_ tonic solution.

10. Cells stay the same size when placed in an _iso_ tonic solution because the amount of water leaving the cell is the same and the amount of water entering.

MULTIPLE CHOICE: Circle and/or fill-in the answer(s) that best completes the sentence.

1. The substance that dissolves to make a solution is called the ________________.
 A. diffuser
 B. solvent
 C. solute
 D. concentrate

2. During diffusion molecules tend to move ________________.
 A. up / against the concentration gradient
 B. from an area of lower concentration to an area of higher concentration
 C. down / with the concentration gradient
 D. in a direction that doesn’t depend on concentration

3. When the concentration of solute inside & outside a cell is the same, the cell has reached ________________.
 A. maximum concentration
 B. homeostasis
 C. osmotic pressure
 D. dynamic equilibrium

4. The diffusion of water across a selectively permeable membrane is called _________________.
 A. active transport
 B. facilitated diffusion
 C. osmosis
 D. phagocytosis

5. Energy for active transport comes from a cell’s _________________.
 A. Golgi complex
 B. nucleus
 C. mitochrondria
 D. lysosomes

6. ______________ transport requires energy from ATP to move substances across membranes.
 A. Passive
 B. Active

7. All of the following are kinds of passive transport EXCEPT _________________.
 A. Diffusion
 B. facilitated diffusion
 C. osmosis
 D. ion channels

8. When molecules move DOWN the concentration gradient it means they’re moving from _________________.
 A. an area of low concentration to an area of higher concentration
 B. an area of high concentration to an area of lower concentration

Fill-Ins – Complete the transport terms. Some of the letters have been filled in!

1. Active transport requires _E_ NERGY to move molecules across membranes.

2. _A T P_ is the molecule that provides the energy for active transport.

3. _DIFFUSION_ moves oxygen and carbon dioxide molecules from a high concentration to a low concentration across membranes.

4. The cell organelles that burns glucose and provides ATP for active transport are the _MITOCHONDRIA_.

5. Water moves across membranes by _OSMOSIS_.

6. A small membrane sac used to transport substances during exocytosis & endocytosis = _VACUOLE_ (vesicle would also work – but didn’t fit in the spaces)

7. _PAS S I V E_ transport does NOT REQUIRE energy.

8. A cell placed in an _ISOTONIC_ solution neither swells or shrinks because the concentration of molecules outside the cell is the same as inside.

9. A solution in which there is a HIGHER concentration of molecules OUTSIDE the cell than inside = _HYPERTONIC_.

10. A CONCENTRATION _G RADIENT_ forms whenever there is a difference in concentration between one place and another.

11. A solution in which the concentration of molecules outside the cell is LOWER than inside = _HY POTONIC_.

12. When molecules move from high to low along a concentration gradient we say they are moving “_D O W N_” the gradient.
13. OSMOTIC pressure is caused by water inside a plant cell pushing against the cell wall.

LOOK AT THE DIAGRAMS – The black dots represent solute molecules dissolved in water.

1. In which beaker is the concentration of solute the greatest?
 - A
 - B

2. If the solute (dots) in this diagram is unable to pass through the dividing membrane, what will happen?
 - A. the water level will rise on the right side of the tube
 - B. the water level will rise on the left side of the tube
 - C. the water level will stay equal on the two sides

Match the description with the solution type:

- **A. Isotonic**
 1. _C_ solution with a lower solute concentration (more water)
 2. _A_ solution in which the solute concentration is the same
 3. _C_ condition plant cells require (otherwise the cell shrinks away from the membrane and the plant wilts)
 4. _A_ condition that animal cells require
 5. _C_ red blood cell bursts (cytolysis)
 6. _B_ plant cells shrink (plasmolysis)
 7. _B_ solution with a higher solute concentration (less water)
 8. _C_ solution with a high water concentration [which means ↓solute conc.]

- **B. Hypertonic**
- **C. Hypotonic**

Label the tonicity for each solution (isotonic, hypotonic, or hypertonic):
Pay close attention to the arrows!!!

Examine the pictures on the bottom of the left side of this page.

What if anything is different about the plant and animal cells in each of these states?

<table>
<thead>
<tr>
<th>State</th>
<th>Animal Cell</th>
<th>Plant Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertonic</td>
<td>cell shrinks</td>
<td>cell shrinks away from the cell wall</td>
</tr>
<tr>
<td>Isotonic</td>
<td>cell remains the same size</td>
<td>cell remains the same size</td>
</tr>
<tr>
<td>Hypotonic</td>
<td>cell swells & bursts</td>
<td>cell swells against the cell wall</td>
</tr>
</tbody>
</table>

Matching – Match each term to its definition:

- **a. energy**
 - _H_ 1. Transport protein that provides a tubelike opening in the plasma membrane through which particles can diffuse

- **b. facilitated diffusion**
 - _A_ 2. Is used during active transport but not passive transport

- **c. endocytosis**
 - _C_ 3. Process by which a cell takes in material by forming a vacuole around it

- **d. passive transport**
 - _D_ 4. Particle movement from an area of higher concentration to an area of lower concentration

- **e. active transport**
 - _F_ 5. Process by which a cell expels wastes from a vacuole

- **f. exocytosis**
 - _B_ 6. A form of passive transport that uses transport proteins

- **g. protein ion pump**
 - _E_ 7. Particle movement from an area of lower concentration to an area of higher concentration

- **h. channel protein**
 - _G_ 8. Transport protein that changes shape when a particle binds with it

Short Answer –

1. Name two factors that affect the rate of diffusion.
 - temperature [increase temp, increase diffusion bc particles speed up]
 - shape [some particles can move by simple diffusion, some can move through protein channels, and some have to move by ion carriers or by endo/exo-cytosis]
 - concentration [increase concentration, increase diffusion]
 - charge [no charge diffuses easily, charged particles do not]
 - solubility [if a substance not soluble…it often won’t diffuse in certain solvent]